Particle Swarm Optimization Using Blended Crossover Operator

نویسندگان

  • Sachin Kumar
  • Suman Banerjee
  • Nanda Dulal Jana
چکیده

In recent days, Swarm Intelligence plays an important role in solving many real life optimization problems. Particle Swarm Optimization (PSO) is swarm intelligence based search and optimization algorithm which is used to solve global optimization problems. But due to lack of population diversity and premature convergence it is often trapped into local optima. We can increase diversity and prevent premature convergence by using some evolutionary operators in PSO. In this paper the blend crossover operator is used to increase the search ability of the swarm in the search space .Particle Swarm Optimization uses this crossover technique to converge optimum solution fast .Thus the blend crossover operator is combined with particle swarm optimization to enhance the performance and keep the diversity which guides the particles to the global optimum efficiently. In this paper a blended crossover based particle swarm optimization algorithm (BCPSO) has been proposed and the proposed algorithm has been tested with some standard benchmark functions. Result shows the promising performance of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator

Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...

متن کامل

An improved particle swarm optimization with a new swap operator for team formation problem

Formation of effective teams of experts has played a crucial role in successful projects especially in social networks. In this paper, a new particle swarm optimization (PSO) algorithm is proposed for solving a team formation optimization problem by minimizing the communication cost among experts. The proposed algorithm is called by improved particle optimization with new swap operator (IPSONSO...

متن کامل

Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...

متن کامل

Particle Swarm Optimization Using Crossover Operator

Particle swarm optimization (PSO) has been widely used mainly due to its simple concept and its ability to converge to reasonable solution fast. However, this algorithm is always inefficient while optimizing complex global optimization problems because it is easy to be trapped into local optima. Researches into the combination of evolutionary operators with PSO is one of the most significant an...

متن کامل

A New PSO Algorithm with Crossover Operator for Global Optimization Problems

This paper presents a new variant of Particle Swarm Optimization algorithm named QPSO for solving global optimization problems. QPSO is an integrated algorithm making use of a newly defined, multiparent, quadratic crossover operator in the Basic Particle Swarm Optimization (BPSO) algorithm. The comparisons of numerical results show that QPSO outperforms BPSO algorithm in all the twelve cases ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015